Privacy noise may negate the benefits of using adaptive optimizers in differentially private model training. Prior works typically address this issue by using auxiliary information (e.g., public data) to boost the effectiveness of adaptive optimization. In this work, we explore techniques to estimate and efficiently adapt to gradient geometry in private adaptive optimization without auxiliary data. Motivated by the observation that adaptive methods can tolerate stale preconditioners, we propose differentially private adaptive training with delayed preconditioners (DP^2), a simple method that constructs delayed but less noisy preconditioners to better realize the benefits of adaptivity. Theoretically, we provide convergence guarantees for our method for both convex and non-convex problems, and analyze trade-offs between delay and privacy noise reduction. Empirically, we explore DP^2 across several real-world datasets, demonstrating that it can improve convergence speed by as much as 4x relative to non-adaptive baselines and match the performance of state-of-the-art optimization methods that require auxiliary data.
translated by 谷歌翻译
We present Second Thought, a new learning paradigm that enables language models (LMs) to re-align with human values. By modeling the chain-of-edits between value-unaligned and value-aligned text, with LM fine-tuning and additional refinement through reinforcement learning, Second Thought not only achieves superior performance in three value alignment benchmark datasets but also shows strong human-value transfer learning ability in few-shot scenarios. The generated editing steps also offer better interpretability and ease for interactive error correction. Extensive human evaluations further confirm its effectiveness.
translated by 谷歌翻译
System auditing has emerged as a key approach for monitoring system call events and investigating sophisticated attacks. Based on the collected audit logs, research has proposed to search for attack patterns or track the causal dependencies of system events to reveal the attack sequence. However, existing approaches either cannot reveal long-range attack sequences or suffer from the dependency explosion problem due to a lack of focus on attack-relevant parts, and thus are insufficient for investigating complex attacks. To bridge the gap, we propose Zebra, a system that synergistically integrates attack pattern search and causal dependency tracking for efficient attack investigation. With Zebra, security analysts can alternate between search and tracking to reveal the entire attack sequence in a progressive, user-guided manner, while mitigating the dependency explosion problem by prioritizing the attack-relevant parts. To enable this, Zebra provides (1) an expressive and concise domain-specific language, Tstl, for performing various types of search and tracking analyses, and (2) an optimized language execution engine for efficient execution over a big amount of auditing data. Evaluations on a broad set of attack cases demonstrate the effectiveness of Zebra in facilitating a timely attack investigation.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译
基于匹配的方法,尤其是基于时空记忆的方法,在半监督视频对象分割(VOS)中明显领先于其他解决方案。但是,不断增长和冗余的模板特征导致推断效率低下。为了减轻这一点,我们提出了一个新型的顺序加权期望最大化(SWEM)网络,以大大降低记忆特征的冗余。与以前仅检测帧之间特征冗余的方法不同,Swem通过利用顺序加权EM算法来合并框架内和框架间的相似特征。此外,框架特征的自适应权重具有代表硬样品的灵活性,从而改善了模板的歧视。此外,该提出的方法在内存中保留了固定数量的模板特征,从而确保了VOS系统的稳定推理复杂性。对常用的戴维斯和YouTube-VOS数据集进行了广泛的实验,验证了SWEM的高效率(36 fps)和高性能(84.3 \%$ \ Mathcal {J} \&\ Mathcal {F} $代码可在以下网址获得:https://github.com/lmm077/swem。
translated by 谷歌翻译
本文介绍了一个新颖的自我监督的细粒度对话评估框架(自我评估)。核心思想是建模转弯质量与整个对话质量之间的相关性。我们首先提出了一种新型的自动数据构建方法,该方法可以自动为任意对话数据分配细粒度的分数。然后,我们使用多层对比度学习模式训练\ textbf {self eval},有助于区分不同的分数水平。多个基准测试的实验结果表明,自我与人类评估高度一致,并且比最先进的模型更好。我们对本文的实验进行了详细的分析。我们的代码和数据将在GitHub上发布。
translated by 谷歌翻译
多实施学习(MIL)被广泛用于对病理整体幻灯片图像(WSIS)的计算机辅助解释,以解决缺乏像素或贴片的注释。通常,这种方法直接应用“自然图像驱动”的MIL算法,该算法忽略了WSIS的多尺度(即金字塔)性质。现成的MIL算法通常部署在单个WSIS(例如20x放大倍率)上,而人类病理学家通常以多尺度的方式汇总全球和局部模式(例如,通过放大不同大型)。在这项研究中,我们提出了一种新型的跨尺度注意机制,以明确地将尺度间相互作用汇总到单个MIL网络的克罗恩病(CD)(CD),这是炎症性肠病的一种形式。本文的贡献是两个方面:(1)提出了一种跨尺度注意机制,以从不同分辨率的多尺度相互作用汇总特征; (2)生成差异多尺度注意的可视化,以定位可解释的病变模式。通过训练来自20名CD患者的约250,000 H&E染色的上升结肠(AC)斑块,在不同尺度上训练30个健康对照样品,我们的方法在曲线下(AUC)得分为0.8924,与基线模型相比达到0.8924。官方实施可在https://github.com/hrlblab/cs-mil上公开获得。
translated by 谷歌翻译
个性化联合学习认为在异质网络中每个客户独有的学习模型。据称,最终的客户特定模型是为了改善联合网络中的准确性,公平性和鲁棒性等指标。但是,尽管该领域有很多工作,但仍不清楚:(1)哪些个性化技术在各种环境中最有效,以及(2)个性化对现实的联合应用程序的真正重要性。为了更好地回答这些问题,我们提出了Motley,这是个性化联合学习的基准。 Motley由一套来自各种问题域的跨设备和跨核管联合数据集组成,以及彻底的评估指标,以更好地理解个性化的可能影响。我们通过比较许多代表性的个性化联合学习方法来建立基准基准。这些最初的结果突出了现有方法的优势和劣势,并为社区提出了几个开放问题。 Motley旨在提供一种可再现的手段,以推进个性化和异质性的联合学习以及转移学习,元学习和多任务学习的相关领域。
translated by 谷歌翻译
虽然差异隐私的应用(DP)在联合学习(FL)方面进行了充分研究,但考虑到跨索洛FL的DP缺乏工作,该设置的特征是有限数量的客户,每个客户都包含许多人数据主体。在跨索洛fl中,由于现实世界中的隐私法规,通常涉及核心数据主体,而不是孤岛本身,因此客户级隐私的通常概念不太适合。在这项工作中,我们相反,考虑了更现实的孤岛特定项目级隐私的概念,其中筒仓为当地示例设定了自己的隐私目标。在这种情况下,我们重新考虑了个性化在联合学习中的作用。特别是,我们表明,均值进行的多任务学习(MR-MTL)是一个简单的个性化框架,是跨索洛FL的强大基准:在更强的隐私下,孤岛进一步激励彼此“联合”以互相“联合”减轻DP噪声,相对于标准基线方法,导致一致的改进。我们为竞争方法以及MR-MTL的理论表征提供了一项彻底的经验研究,以实现平均估计问题,从而突出了隐私与跨核数据异质性之间的相互作用。我们的工作旨在为私人跨索洛FL建立基准,并确定该领域未来工作的关键方向。
translated by 谷歌翻译